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We apply the time-convolutionless �TCL� projection operator technique to the model of a central spin, which
is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method
for the coherences and populations of the central spin are determined analytically and compared to numerical
simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an
excellent approximation in the strong field regime for the description of both the short-time dynamics and the
long time behavior.
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I. INTRODUCTION

Projection operator techniques1 are widely used in studies
of the dynamical behavior of complex open quantum sys-
tems featuring non-Markovian relaxation and decoherence
phenomena.2 The most prominent variant of these techniques
is the Nakajima-Zwanzig �NZ� projection operator method,
which leads to an integrodifferential equation for the reduced
density matrix of the open system containing a certain
memory kernel.3,4 An alternative and technically much sim-
pler scheme is the time-convolutionless �TCL� projection op-
erator technique in which one obtains a first-order differen-
tial equation for the reduced density matrix.5 The advantage
of the TCL approach consists in the fact that it yields an
equation of motion for the relevant degrees of freedom,
which is local in time and therefore often much easier to deal
with than the NZ master equation. In fact, this method has
been applied to many physical systems showing strong non-
Markovian effects �see, e. g., Refs. 6–8�.

In the present paper we apply the TCL projection operator
technique to the model of a central spin interacting with a
bath of N spins defined by the Hamiltonian ��=1�

H =
�0

2
�3 + �

k=1

N

�k� · �k. �1�

The Pauli operators � and �k act on the Hilbert spaces of the
central spin, which is regarded as the open quantum system,
and of the k-th bath spin, respectively. The strength of the
spin-bath coupling is given by the constants �k. Moreover
we have included an external magnetic field that acts on the
central spin and leads to the Zeeman splitting �0.

The model given by the Hamiltonian �Eq. �1�� may be
used to describe for example a single, localized electron spin
coupled to a bath of nuclear spins in a quantum dot through
contact hyperfine interaction.9 It features many interesting
phenomena such as nonexponential behavior of correlations
and coherences and strong non-Markovian effects. A detailed
treatment of the model within the NZ projection operator
technique has been carried out in Ref. 10, and nonperturba-
tive solutions for polarized initial conditions have been con-
structed in Ref. 11. Recently, a detailed analytical and nu-
merical study of the exact Bethe ansatz solution12 of the

model has been carried out.13 Moreover, several efficient nu-
merical algorithms have been proposed that are based, e. g.,
on the spin-coherent-state representation14 or on the Cheby-
shev expansion for the full propagator.15

The TCL projection operator method has been applied to
various spin bath models for which a compact analytical so-
lution is available, such as central spin models with Heisen-
berg XY �Ref. 16� and with full Heisenberg interaction17 for
uniform couplings, and central spin models with nonuniform
Ising interaction.18 The purpose of the present paper is a
detailed investigation of the performance of the TCL tech-
nique for the nontrivial model given by Eq. �1� with nonuni-
form couplings. To this end, we will compare the results for
the populations and the coherences of the central spin ob-
tained from the TCL approach to numerical simulations of
the full von Neumann equation of the model. It will be dem-
onstrated that the method provides an efficient scheme,
which is applicable in the perturbative regime of weak cou-
plings, even for long interaction times.

The paper is organized as follows. Sec. II contains a brief
account of the TCL projection operator technique and its
application to the model given by the Hamiltonian �Eq. �1��,
as well as the derivation of the master equation governing
the dynamics of the reduced density matrix of the central
spin. We compare in Sec. III the solutions of this master
equation to numerical simulations of the von Neumann equa-
tion corresponding to the Hamiltonian �Eq. �1��. In Sec. IV
we discuss the performance of an alternative TCL approach
that is based on a modified interaction picture and leads to a
simplified master equation. Finally, we draw our conclusions
in Sec. V.

II. TCL MASTER EQUATION

A. Interaction picture

It is convenient to write the Hamiltonian �Eq. �1�� as H
=H0+HI, where

H0 =
�0

2
�3 + 2�3K3 �2�

represents the unperturbed part, and

PHYSICAL REVIEW B 78, 064309 �2008�

1098-0121/2008/78�6�/064309�8� ©2008 The American Physical Society064309-1

http://dx.doi.org/10.1103/PhysRevB.78.064309


HI = 2��+K− + �−K+� �3�

is the interaction Hamiltonian.10 In Eq. �3� �� are the raising
and lowering operators of the central spin, whereas

K3 =
1

2�
k=1

N

�k�3
k, K� = �

k=1

N

�k��
k . �4�

In the interaction picture defined by H0 the interaction
Hamiltonian becomes

HI�t� = �+B−�t� + �−B+�t� , �5�

where

B��t� = 2e�i�0te�2iK3tK�e�2iK3t. �6�

Thus the dynamics of the total system’s density matrix ��t� is
governed by the von Neumann equation

d

dt
��t� = − i�HI�t�,��t�� � L�t���t� , �7�

where L�t� denotes the Liouville superoperator correspond-
ing to the interaction Hamiltonian HI�t�.

B. TCL projection operator approach

The starting point of the projection operator technique is
the introduction of a suitable projection superoperator P.
This is a positive and trace-preserving linear map that acts on
the operators of the total system with the property of a pro-
jection operator, i.e.. P2=P. The superoperator P is used to
project any state � of the total system onto its relevant part
P�, expressing formally the elimination of the irrelevant de-
grees of freedom from the full dynamical description of the
underlying model.2

Projection operator techniques are used to derive a closed
equation of motion for the relevant part P�. A special variant
of these techniques is the TCL projection operator method.
Given an initial state ��0� satisfying P��0�=��0�, this tech-
nique leads to a time-local first-order master equation for the
relevant part of the form

d

dt
P��t� = K�t�P��t� . �8�

Here, K�t� is a certain superoperator, representing the explic-
itly time-dependent generator of the quantum master equa-
tion for P�. We note that, like the corresponding NZ equa-
tion, the TCL master �Eq. �8�� describes all non-Markovian
effects although it is local in time.

In practical applications the TCL generator K�t� is mostly
obtained from a perturbation expansion with respect to the
strength of the interaction Hamiltonian,

K�t� = K1�t� + K2�t� + . . . . �9�

The first-order contribution is given by

K1�t� = PL�t�P , �10�

while the second-order term takes the form

K2�t� = �
0

t

dt1�PL�t�L�t1�P − PL�t�PL�t1�P� . �11�

We remark that this expansion corresponds to an expansion
in terms of the ordered cumulants of the Liouville operator2

L�t�.
In the present paper we restrict ourselves to the second

order and employ the following projection superoperator:

P� = �
m

TrB��m�	 �
1

Nm
�m. �12�

Here, TrB denotes the partial trace over the spin bath, and the
�m are ordinary projection operators acting in the conven-
tional sense on the Hilbert space of the spin bath. They
project onto the eigenspaces of the 3-component of the bath
angular momentum,

J3 =
1

2�
k=1

N

�3
k , �13�

corresponding to the eigenvalues m=−N /2, . . . ,N /2. The
quantity

Nm = TrB �m = 
 N
N
2 + m

� �14�

represents the degree of degeneracy of the eigenvalue m of
J3. Explicitly, we have

�m = �
�mk=m

�m1,m2, . . . ,mN�m1,m2, . . . ,mN� , �15�

where mk= �
1
2 denotes the eigenvalue of the k-th bath spin

operator 1
2�3

k. Obviously, the projection operators �m fulfill
the relations

�m�m� = 	mm��m�, �
m

�m = I . �16�

With the help of Eq. �16� it is easy to verify that the projec-
tion superoperator �Eq. �12�� is indeed a completely positive
and trace-preserving map that satisfies19 P2=P. It projects a
given state � onto a separable quantum state P�, which de-
scribes classical correlations between the �unnormalized�
system states

�m�t� � TrB��m��t�	 �17�

and the bath states �m /Nm. The latter represent states of
maximal entropy under the constraint of a given value m for
the total angular momentum. Finally, the reduced density
matrix of the central spin is given by

�S�t� = TrB ��t� = �
m

�m�t� . �18�

Thus, the dynamics of the central spin is determined by the
dynamical variables �m�t�, m=−N /2, . . . ,N /2.

As mentioned already the TCL master �Eq. �8�� presup-
poses that the total system’s initial state ��0� fulfills the con-
dition
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P��0� = ��0� . �19�

If this condition is not satisfied one has to add a certain
inhomogeneity to the right-hand side of the TCL master
equation, which involves the initial conditions through the
complementary projection Q��0�= �I−P���0�. In the stan-
dard applications of the projection operator techniques one
employs a projection superoperator that projects onto an un-
correlated tensor product state. Condition �19� then holds, of
course, if and only if the initial state is an uncorrelated state
of the form ��0�=�S � �B, where �S is a state of the system
and �B is a state of the bath. However, the projection given
by Eq. �12� belongs to the class of correlated projection
superoperators,8,19 which projects a given state � onto a cor-
related system-bath state. For this correlated projection con-
dition �19� is satisfied if and only if the initial state is of the
form

��0� = �
m

�m�0� �
1

Nm
�m. �20�

Hence, the initial state may contain certain statistical corre-
lations. A great advantage of the correlated projection opera-
tor technique is therefore given by the fact that it allows the
treatment of correlated initial states by means of a homoge-
neous TCL master equation.

C. Deriving the master equation

For the interaction Hamiltonian �Eq. �5�� the projection
operator �Eq. �12�� satisfies PL�t�P=0. Hence, to second
order the TCL master Eq. �8� reduces to

d

dt
P��t� = �

0

t

dt1PL�t�L�t1�P��t� . �21�

Taking into account the definition of P as given by Eq. �12�
and exploiting the properties �Eq. �16��, it is possible to con-
vince oneself that Eq. �21� is equivalent to the following
system of coupled differential equations in the dynamical
variables �m�t�:

d

dt
�m�t� = − �

m�
�

0

t

dt1TrB��m�HI�t�,�HI�t1�,�m��t�

�
1

Nm�
�m���� .

Evaluating the double commutator we finally get the master
equation

d

dt
�m�t� = �

0

t

d
��gm+1�
� + gm+1
� �
���+�m+1�t��−

+ �fm−1�
� + fm−1
� �
���−�m−1�t��+ − fm�
��+�−�m�t�

− fm
� �
��m�t��+�− − gm�
��−�+�m�t�

− gm
� �
��m�t��−�+	 . �22�

The correlation functions fm�
� and gm�
� are defined by

fm�
� = �B−�t�B+�t1�m, �23�

gm�
� = �B+�t�B−�t1�m, �24�

with 
= t− t1 and

�Om =
1

Nm
TrB�O�m	 . �25�

Exploiting Eq. �6� we find

fm�
� = 4�
k

�k
2��−

k�+
kei��0+4K3+2�k�
m, �26�

gm�
� = 4�
k

�k
2��+

k�−
kei�−�0−4K3+2�k�
m. �27�

III. COMPARISON TO NUMERICAL SIMULATIONS

In this section we compare the dynamics of the density
matrix �S�t� of the central spin obtained by solving the mas-
ter Eq. �22� to the one deduced directly from the von Neu-
mann Eq. �7�. In particular we will consider the dynamics of
both the coherences and the populations of the central spin
starting from a fixed initial condition. To this end, we have
carried out numerical simulations of the full von Neumann
equation with mixed initial states for systems with up to N
=10 bath spins. Of course, the number of bath spins for
which a direct numerical simulation of the von Neumann
equation is possible is limited by the exponential increase in
the dimension of the underlying Hilbert space. We note that
the dimension of the total state space �the space of density
matrices� is given by D=22N+2−1, which yields D�4·106

for N=10.
In the following we assume that the hyperfine coupling

constants are given by

�k = �0 exp�− 
 k

k0
�n/d� , �28�

where k0=N /2. We choose n /d=2 corresponding to a Gauss-
ian electronic wave function �n=2� in one dimension �d
=1�, which is of relevance in the context of a quantum
dot.10,13 We denote by A1 the mean of the coupling constants
�k and by A2 the respective root mean square,

A1 =
1

N
�

k

�k, A2 =� 1

N
�

k

�k
2. �29�

The initial state of the total system is taken to be ��0�
=�S�0� � �B�0�, where �B�0�=2−NI represents an unpolarized
infinite temperature state �I denotes the unit matrix of the
spin bath�. With this initial state we have �m�0�
=2−NNm�S�0�. We emphasize that the present technique also
allows the treatment of polarized and of correlated initial
states �see Sec. II B�.

A. Coherences

The coherence of the central spin is defined by C̃�t�
= �+��S�t��−, where ��  denote the eigenstates of �3. Ac-
cording to Eq. �18� we have
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C̃�t� = �
m

C̃m�t� = �
m

�+ ��m�t��−  . �30�

Starting from the master Eq. �22� we have

d

dt
C̃m�t� = − �

0

t

d
�fm�
� + gm
� �
��C̃m�t� �31�

with the obvious solution

C̃m�t� = C̃m�0�e−�m
coh�t�, �32�

where

�m
coh�t� = �

0

t

dt1�
0

t1

dt2�fm�t2� + gm
� �t2�� . �33�

Let’s now remember that the master equation �Eq. �22�� has
been written in the interaction picture with respect to the
Hamiltonian �Eq. �2��. As usual, we will represent our results
in the interaction picture with respect to the free Hamiltonian
��0 /2��3, which is in the rotating frame of the central spin.
In order to do this we have to use the replacement

�
m

�m�t� �
�m

Nm
→ �

m

e−2i�3K3t�m�t� �
�m

Nm
e2i�3K3t.

It is immediate to observe that under this transformation the
populations remain unchanged, while the coherences must be
multiplied by the factor �e−4iK3tm. Hence, the coherence C�t�
in the rotating frame of the central spin is found to be

C�t� = C�0��
m

Nm

2N �e−4iK3tme−�m
coh�t�. �34�

In Fig. 1 we compare the result of the TCL approximation
given by Eq. �34� to numerical simulations of the von Neu-
mann Eq. �7� supposing that the central system is initially
prepared in the superposition state 1

�2
��+ + �−�. Correlation

functions �26� and �27�, and the mean value �e−4iK3tm have
been calculated numerically. As it is evident from the figures
the agreement between the TCL result and the numerical
solution is excellent in the perturbation regime, even for long
integration times.

B. Populations

The populations P��t�= ����S�t���  of the central spin
are given by

P��t� = �
m

Pm
��t� = �

m

�� ��m�t�� �  . �35�

The master equation �Eq. �22�� leads to a system of coupled
equations,

d

dt
Pm

+ �t� = �
0

t

d
�gm+1�
� + gm+1
� �
��Pm+1

− �t� − �fm�
�

+ fm
� �
��Pm

+ �t� , �36�

d

dt
Pm

− �t� = �
0

t

d
�fm−1�
� + fm−1
� �
��Pm−1

+ �t� − �gm�
�

+ gm
� �
��Pm

− �t� . �37�

To solve these equations we employ the relation

d

dt
�Pm

+ �t� + Pm+1
− �t�� = 0, �38�

which expresses the conservation of the 3-component of the
total spin angular momentum. Using the initial condition
P+�0�=1 we obtain

P+�t� = �
m

Nm

2N e−�m
pop�t��1 + �

0

t

dt1e�m
pop�t1��m�t1�� , �39�

where

�m
pop�t� = 2 Re �

0

t

dt1�
0

t1

dt2�gm+1�t2� + fm�t2�� , �40�

and

�m�t� = 2 Re �
0

t

d
gm+1�
� . �41�

The comparison of the TCL result �Eq. �39�� with the nu-
merical simulation is shown in Fig. 2. We again observe a
very good agreement of the TCL approximation with the
exact dynamics for short and also for long interaction times.
Due to the exponential increase in the numerical effort with
increasing N we can treat only a relatively small number of
bath spins. Thus we have an open quantum system, the cen-
tral spin, which is coupled to a relatively small environment,
a finite system of bath spins. For this reason, the conven-
tional techniques used in the theory of open systems to de-
rive a Markovian master equation are not applicable because
they are usually based on an effectively infinite environment
with a continuum of bath modes. However, the TCL approxi-
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FIG. 1. �Color online� Real and imaginary parts of the coher-
ence of the central spin for �0 /�0=0.01 and N=10 bath spins. Blue
dots: Numerical simulation. Red line: TCL approximation accord-
ing to Eq. �34�.

FERRARO et al. PHYSICAL REVIEW B 78, 064309 �2008�

064309-4



mation scheme developed here does not require that N be
large. The master Eq. �22� is therefore valid also for a very
small number of bath spins. We illustrate this point in Figs. 3
and 4, which show the dynamics of the coherences and the
populations for N=6 bath spins.

The master equation �Eq. �22�� has been obtained from
the second order of the TCL perturbation expansion. Of
course, for much stronger system-bath couplings the second-
order result fails, indicating the relevance of cumulants of
higher order. To illustrate this point we have increased �0 by
a factor of ten. The result for the coherences and the popu-
lations is depicted in Figs. 5 and 6, respectively. We observe
that the short-time behavior is still correctly reproduced by
the second order, while there are large deviations for longer
times. We conclude from our numerical simulations that the

second order of the TCL scheme yields a good agreement
with the exact dynamics for couplings up to the order of
�0 /�0�10−2. Note however that the decay of the coherence
C�t� and the corresponding decoherence time are very well
reproduced even for much larger couplings as can be seen
from Figs. 5.

IV. MODIFIED INTERACTION PICTURE

A certain disadvantage of the perturbation scheme used in
Sec. II consists in the fact that the time integrals over the
correlations functions in Eqs. �33� and �39�–�41� are gener-
ally difficult to calculate and have to be determined numeri-
cally. To avoid the appearance of these expressions and to
obtain a simpler approximation scheme we employ a modi-
fication of the interaction picture Hamiltonian. To this end,
we write the Hamiltonian �Eq. �1�� again as H=H0+HI,
where now the unperturbed part is given by
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Im
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2
t

FIG. 5. �Color online� Real and imaginary parts of the coher-
ence of the central spin for �0 /�0=0.1 and N=10 bath spins. Blue
dots: Numerical simulation. Red line: TCL approximation accord-
ing to Eq. �34�.
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FIG. 2. �Color online� Population of the central spin for
�0 /�0=0.01 and N=10 bath spins. Blue dots: Numerical simula-
tion. Red line: TCL approximation according to Eq. �39�.

0 1 2 3 4 5

0

0.2

0.4

R
e(

C
)

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

Im
(C

)

A
2
t

FIG. 3. �Color online� Real and imaginary parts of the coher-
ence of the central spin for �0 /�0=0.01 and N=6 bath spins. Blue
dots: Numerical simulation. Red line: TCL approximation accord-
ing to Eq. �34�.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 10
−3

P
−

A
2
t

FIG. 4. �Color online� Population of the central spin for
�0 /�0=0.01 and N=6 bath spins. Blue dots: Numerical simulation.
Red line: TCL approximation according to Eq. �39�.
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H0 =
�0

2
�3 + 2A2�3J3, �42�

and

HI = 2�3�K3 − A2J3� + 2��+K− + �−K+� �43�

represents the interaction Hamiltonian. By contrast to the
interaction picture of Sec. II, here the diagonal term 2�3K3
of the Hamiltonian �Eq. �1�� is not completely removed from
the interaction, but we subtract only the term 2A2�3J3 in-
volving an effective coupling constant A2 that is equal to the
root mean square of the �k �see Eqs. �13� and �29��. Hence,
the interaction picture Hamiltonian now takes the form

HI�t� = 2�3�K3 − A2J3� + �+B−�t� + �−B+�t� , �44�

where

B��t� = 2e�i�0te�2iA2J3tK�e�2iA2J3t. �45�

The corresponding Liouville operator will again be denoted
by L�t�.

An important point of the new interaction picture is that
for Hamiltonian �44� and projection �12� the first-order term
PL�t�P does not vanish. Hence, one has to use the full ex-
pressions Eqs. �10� and �11� for the second-order TCL gen-
erator. However, the great advantage of the present proce-
dure is the fact that the correlation functions Eqs. �23� and
�24� take on a very simple form

fm�
� = B+�m�ei+�m�
, �46�

gm�
� = B−�m�ei−�m�
, �47�

where

��m� = � �0 + 4A2
�m +
1

2
�

and

B��m� = 4A2
2
N

2
� m� .

With the help of these expressions we find the master equa-
tion

d

dt
�m�t� = 2im�A2 − A1���3,�m�t�� −

N2 − 4m2

N − 1

��A2
2 − A1

2�t��3,��3,�m�t��� + �
0

t

d


� �B−�m + 1�2 cos�+�m�
��+�m+1�t��−

+ B+�m − 1�2 cos�−�m�
��−�m−1�t��+

− B+�m�ei+�m�
�+�−�m�t�

− B+�m�e−i+�m�
�m�t��+�−

− B−�m�ei−�m�
�−�+�m�t�

− B−�m�e−i−�m�
�m�t��−�+	 . �48�

In the special case of uniform couplings ��k=const� we have
A1=A2. Equation �48� then reduces to the master equation
derived in Ref. 17.

The master equation �Eq. �48�� can again be solved ana-
lytically. The procedure is similar to the one outlined in Sec.
II. We find the coherences,

C�t� = C�0��
m

Nm

2N e−�m
coh�t�, �49�

where

�m
coh�t� = 4iA1mt + 2

N2 − 4m2

N − 1
�A2

2 − A1
2�t2 +

B+�m�
+

2�m�

��1 − ei+�m�t� +
B−�m�
−

2�m�
�1 − e−i−�m�t�

+ it� B+�m�
+�m�

−
B−�m�
−�m�� , �50�

and the populations,

P+�t� = �
m

Nm

2N � N
2 + m + 1

N + 1
+

N
2 − m

N + 1
e−�m

pop�t�� , �51�

where

�m
pop�t� =

8A2
2�N + 1�

+
2�m�

�1 − cos�+�m�t�� . �52�

Involving only a sum over the quantum number m, expres-
sions �49� and �51� can be evaluated numerically in a very
efficient way. The comparison to the numerical simulation of
the von Neumann equation demonstrates that also the TCL
approach with the modified interaction picture yields a good
agreement. The decoherence �see Fig. 7�, as well as the os-
cillations and the decay of the populations �see Fig. 8�, is
very well reproduced by the simplified scheme. For longer
interaction times the result �Eq. �51�� leads to revivals of the
populations �see Fig. 9�, which are due to the commensura-
bility of the frequencies +�m�. We stress that these revivals
are neither present in the exact solution nor in the TCL ap-
proximation �Eq. �39��. Apart from these revivals the simpli-
fied approximation given by the master equation �Eq. �48��
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FIG. 6. �Color online� Population of the central spin for
�0 /�0=0.1 and N=10 bath spins. Blue dots: Numerical simulation.
Red line: TCL approximation according to Eq. �39�.
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thus provides an accurate description of the decoherence and
of the oscillating decay of the populations.

Finally we investigate the limit of a large number N of
bath spins. For small values of the quantity ��2�NA2 /�0
and large N the result �Eq. �51�� can be approximated by

P+�t� � 1 − �2�1 − e−2NA2
2t2 cos �0t� . �53�

To obtain this expression one first expands the exponential in
Eq. �51� for small �m

pop and carries out the summation over
m. Equation �53� provides a good approximation for a fixed
��1 even for moderate N values. For example, the case of
N=10 bath spins with �0 /�0=0.01 investigated above corre-
sponds to �=0.03. For this value of �, we find that Eq. �53�
yields a good agreement for all N larger than about 10.

V. CONCLUSIONS

The appearance of a retarded memory kernel in the equa-
tions of motion, e.g., in the Nakajima-Zwanzig equation, is
often regarded as the characteristic feature of non-Markovian
quantum processes. However, applications of the time-
convolutionless projection operator technique show that
strong non-Markovian behavior of open quantum systems
can often be described by time-local master equations with
an explicitly time-dependent generator. Although there is no
theory of non-Markovian dynamics which allows a general
assessment of the NZ and the time-convolutionless �TCL�
scheme, experience shows that in many physical systems the
degree of accuracy achieved by both methods is of the same
order of magnitude. In such cases the TCL method is clearly
to be preferred because it only requires solving a time-local
master equation. This does not mean that the TCL technique
is always better than the NZ technique. The performance of
these perturbation schemes strongly depends on the details of
the system under investigation and on the chosen projection
superoperator. There are examples of physical systems for
which either the NZ or the TCL approach yields the exact
result already in lowest order of perturbation theory.17,20

In the present paper we have demonstrated the feasibility
of the TCL approach in the case of a nontrivial model de-
scribing a central spin coupled to a spin bath through non-
uniform Heisenberg interaction. We have shown that the
method indeed works in the strong field limit and provides a
good approximation of the short and the long-time behavior
of the coherences and the populations of the central spin. In
addition, we have developed a TCL master equation that is
based on a modified interaction picture and leads to a com-
pact analytical solution for the central spin’s density matrix,
which allows an efficient numerical computation.

A possible approach to moderate or strong couplings is
the analysis of the ordered cumulants of higher orders in the
TCL expansion. However, it seems that a more efficient
strategy consists in the construction of more suitable corre-
lated projection superoperators. An example of this strategy
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FIG. 7. �Color online� Real and imaginary parts of the coher-
ence of the central spin for �0 /�0=0.01 and N=10. Blue dots:
numerical simulation. Green line: TCL approximation according to
Eq. �49�.
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FIG. 8. �Color online� Population of the central spin for
�0 /�0=0.01 and N=10. Blue dots: Numerical simulation. Green
line: TCL approximation according to Eq. �51�.
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FIG. 9. �Color online� The same as Fig. 8 for a longer interac-
tion time.
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is discussed in Ref. 17, where a certain correlated projection
has been constructed for which the second-order Nakajima-
Zwanzig master equation leads to the exact dynamics of the
population for the Hamiltonian �Eq. �1�� with uniform cou-
plings. It is of great relevance to develop possible extensions
of this strategy to the nonuniform spin bath model analyzed
here.
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